Bolzano-W.Teoremi

BOLZANO-WEIERSTRASS TEOREMİ


Bolzano-Weierstrass teoremi klasik matematik analizin temel teoremlerinden biridir. İlk kez "Fonksiyonlar" adlı kitabında Bernhard Bolzano tarafından kullanıldı. Sonraki yıllarda bu teoremin ispatı tam olarak Karl Weierstrass tarafından verilmiştir. Bu nedenle, bu teorem analizde Bolzano-Weierstrass teoremi olarak bilinir.

mathbb{R}reel sayılar kümesinin, sınırlı ve sonsuz elemana sahip her alt kümesinin en az biryığılma noktası vardır.

İSPAT

reel sayılarda sınırlı ve sonsuz elemanlı bir küme A olsun. Reel sayılar tamlık aksiyomunusağladığından A kümesinin supremum ve infimum'u vardır. infA=x, supA=y olsun. Bu durumda her aЄA için x≤a≤y elde edilir. [x,y] aralığını iki kapalı aralığa bölelim. Bu aralıklardan en az bir tanesi sonsuz eleman kapsar. Böylece devam edilerek tümevarımla artan(xn) ve azalan (yn), xn<yn dizilerini oluştururuz. [xn,yn] aralığının uzunluğu yn-xn=y-x/2n ve A∩[xn,yn] kümesinin sonsuz çoklukta elemanı vardır. (xn) artan sınırlı, (yn) azalan sınırlı dizi olduklarından yakınsar. limnxn=supnxn=p ve limnyn=infnyn=q olsun. yn-xn=y-x/2n olduğundan supnxn=infnyn=p olur. ε>0 verilsin. y-x<y-x/2n olacak biçimde nЄN seçelim. bu durumda yn-p≤yn-xn<ε ve p-xn≤yn-xn<ε elde edilir. (p-ε,p+ε)aralığı A∩[xn,yn] kümesinin sonsuz çoklukta elemanını kapsadığından p noktası A kümesinin bir yığılma noktasıdır.



 
Reklam
 
 
Bugün 4 ziyaretçi (81 klik) kişi burdaydı!
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=